290 research outputs found

    DOH: A Content Delivery Peer-to-Peer Network

    Get PDF
    Many SMEs and non-pro¯t organizations suŸer when their Web servers become unavailable due to °ash crowd eŸects when their web site becomes popular. One of the solutions to the °ash-crowd problem is to place the web site on a scalable CDN (Content Delivery Network) that replicates the content and distributes the load in order to improve its response time. In this paper, we present our approach to building a scalable Web Hosting environment as a CDN on top of a structured peer-to-peer system of collaborative web-servers integrated to share the load and to improve the overall system performance, scalability, availability and robustness. Unlike clusterbased solutions, it can run on heterogeneous hardware, over geographically dispersed areas. To validate and evaluate our approach, we have developed a system prototype called DOH (DKS Organized Hosting) that is a CDN implemented on top of the DKS (Distributed K-nary Search) structured P2P system with DHT (Distributed Hash table) functionality [9]. The prototype is implemented in Java, using the DKS middleware, the Jetty web-server, and a modi¯ed JavaFTP server. The proposed design of CDN has been evaluated by simulation and by evaluation experiments on the prototype

    RoBuSt: A Crash-Failure-Resistant Distributed Storage System

    Full text link
    In this work we present the first distributed storage system that is provably robust against crash failures issued by an adaptive adversary, i.e., for each batch of requests the adversary can decide based on the entire system state which servers will be unavailable for that batch of requests. Despite up to γn1/log⁥log⁥n\gamma n^{1/\log\log n} crashed servers, with γ>0\gamma>0 constant and nn denoting the number of servers, our system can correctly process any batch of lookup and write requests (with at most a polylogarithmic number of requests issued at each non-crashed server) in at most a polylogarithmic number of communication rounds, with at most polylogarithmic time and work at each server and only a logarithmic storage overhead. Our system is based on previous work by Eikel and Scheideler (SPAA 2013), who presented IRIS, a distributed information system that is provably robust against the same kind of crash failures. However, IRIS is only able to serve lookup requests. Handling both lookup and write requests has turned out to require major changes in the design of IRIS.Comment: Revised full versio

    The Impact of Heterogeneous Bandwidth Constraints on DHT-Based Multicast Protocols

    Full text link

    iOverlay: A Lightweight Middleware Infrastructure for Overlay Application Implementations

    Full text link

    A Probabilistic Analysis of Kademlia Networks

    Full text link
    Kademlia is currently the most widely used searching algorithm in P2P (peer-to-peer) networks. This work studies an essential question about Kademlia from a mathematical perspective: how long does it take to locate a node in the network? To answer it, we introduce a random graph K and study how many steps are needed to locate a given vertex in K using Kademlia's algorithm, which we call the routing time. Two slightly different versions of K are studied. In the first one, vertices of K are labelled with fixed IDs. In the second one, vertices are assumed to have randomly selected IDs. In both cases, we show that the routing time is about c*log(n), where n is the number of nodes in the network and c is an explicitly described constant.Comment: ISAAC 201

    Quickly routing searches without having to move content

    Get PDF
    Abstract. A great deal of work has been done to improve peer-to-peer routing by strategically moving or replicating content. However, there are many applications for which a peer-to-peer architecture might be appropriate, but in which content movement is not feasible. We argue that even in such applications, progress can be made in developing techniques that ensure efficient searches. We present several such techniques. First, we show that organizing the network into a square-root topology, where peer degrees are proportional to the square root of the popularity of their content, provides much better performance than power-law networks. Second, we present routing optimizations based on the amount of content stored at peers, and tracking the “best ” peers, that can further improve performance. These and other techniques can make searches efficient, even when content movement or replication is not feasible.

    Aerosol number-to-volume-relationship and relative humidity in the eastern Atlantic

    Get PDF
    J. Geophys. Res ., 105, 1987-1995.Measurementsa cquiredf rom the Office of Naval Research( ONR) Pelican research aircraftd uringt he secondA erosolC haracterizationE xperiment( ACE 2) are analyzedt o derive valuesf or the dry (RH = 40%) aerosonl umber-to-volumrea tio in the submicrons izer ange. This ratioi s foundto ber elativelyc onstanwt,i tha meanv alueo f 168_ +2 1 gm- 3,i n agreemenwti th previouss tudiese lsewhere.T he impacto f ambientr elativeh umidity (RH) on the dry number-to-volumies alsoq uantifieda nd a procedurefo r estimatingth e dry from the ambientr atio established.F inally, the feasibilityo f a remoter etrievalo f the aerosoln umberc oncentrationin the submicrons izer ange,e ssentiallyth e cloudc ondensation ucleusc oncentrationa ctive at a nominal0 .2% supersaturationis, partially assessed

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    Programming Overlay Networks with Overlay Sockets

    Full text link

    Optimization in a Self-Stabilizing Service Discovery Framework for Large Scale Systems

    Get PDF
    Ability to find and get services is a key requirement in the development of large-scale distributed sys- tems. We consider dynamic and unstable environments, namely Peer-to-Peer (P2P) systems. In previous work, we designed a service discovery solution called Distributed Lexicographic Placement Table (DLPT), based on a hierar- chical overlay structure. A self-stabilizing version was given using the Propagation of Information with Feedback (PIF) paradigm. In this paper, we introduce the self-stabilizing COPIF (for Collaborative PIF) scheme. An algo- rithm is provided with its correctness proof. We use this approach to improve a distributed P2P framework designed for the services discovery. Significantly efficient experimental results are presented
    • 

    corecore